by Simon Jackman (Author)
Bayesian methods are increasingly being used in the social sciences, as the problems encountered lend themselves so naturally to the subjective qualities of Bayesian methodology. This book provides an accessible introduction to Bayesian methods, tailored specifically for social science students. It contains lots of real examples from political science, psychology, sociology, and economics, exercises in all chapters, and detailed descriptions of all the key concepts, without assuming any background in statistics beyond a first course. It features examples of how to implement the methods using WinBUGS - the most-widely used Bayesian analysis software in the world - and R - an open-source statistical software. The book is supported by a Website featuring WinBUGS and R code, and data sets.
Back Jacket
Bayesian Analysis for the Social Sciences provides a thorough yet accessible treatment of Bayesian statistical inference in social science settings.
The first part of this book presents the foundations of Bayesian inference, via simple inferential problems in the social sciences: proportions, cross-tabulations, counts, means and regression analysis. A review of modern, simulation-based inference is presented with a detailed examination of the suite of computational tools (Markov chain Monte Carlo algorithms) that underlie the "Bayesian revolution" in contemporary statistics. Furthermore, the book introduces the general purpose Bayesian computer programs BUGS and JAGS along with numerous examples, and a detailed consideration of the art of using these programs in real-world settings.
The second half of the book focuses on intermediate to advanced applications in the social sciences, including hierarchical or "multi-level" models, models for discrete responses (binary, ordinal, and multinomial data), measurement models (factor analysis, item-response models, dynamic linear models), and mixture models, along with models that are interesting hybrids of these models. Each model is accompanied by worked examples using BUGS/JAGS, using data from political science, sociology, psychology, education, communications, economics and anthropology.
Each chapter is accompanied with exercises to further the students' understanding of Bayesian methods and applications. Extensive appendices provide important technical background and proofs of key theoretical propositions.
This book presents a forceful argument for the philosophical and practical utility of the Bayesian approach in many social science settings. Graduate and postgraduate students in such fields as political science, sociology, psychology, communications, education, and economics and statisticians will find much value in this book.
Author Biography
Simon Jackman is a political scientist by trade but has a tremendous amount of experience in using Bayesian methods for solving problems in the social and political sciences, and teaching Bayesian methods to social science students.
Number of Pages: 608
Dimensions: 1.5 x 9.8 x 6.8 IN
Illustrated: Yes
Publication Date: December 01, 2009