Free Shipping on Orders of $75 or more.

Mechanistic Data Science for Stem Education and Applications - Paperback

Mechanistic Data Science for Stem Education and Applications - Paperback

Regular price $97.18
Sale price $97.18 Regular price
Sale Sold out
Unit price
/per 
This is a pre order item. We will ship it when it comes in stock.
Lock Secure Transaction

by Wing Kam Liu (Author), Zhengtao Gan (Author), Mark Fleming (Author)

This book introduces Mechanistic Data Science (MDS) as a structured methodology for combining data science tools with mathematical scientific principles (i.e., "mechanistic" principles) to solve intractable problems. Traditional data science methodologies require copious quantities of data to show a reliable pattern, but the amount of required data can be greatly reduced by considering the mathematical science principles. MDS is presented here in six easy-to-follow modules: 1) Multimodal data generation and collection, 2) extraction of mechanistic features, 3) knowledge-driven dimension reduction, 4) reduced order surrogate models, 5) deep learning for regression and classification, and 6) system and design. These data science and mechanistic analysis steps are presented in an intuitive manner that emphasizes practical concepts for solving engineering problems as well as real-life problems. This book is written in a spectral style and is ideal as an entry level textbook for engineering and data science undergraduate and graduate students, practicing scientists and engineers, as well as STEM (Science, Technology, Engineering, Mathematics) high school students and teachers.

Back Jacket

This book introduces Mechanistic Data Science (MDS) as a structured methodology for combining data science tools with mathematical scientific principles (i.e., "mechanistic" principles) to solve intractable problems. Traditional data science methodologies require copious quantities of data to show a reliable pattern, but the amount of required data can be greatly reduced by considering the mathematical science principles. MDS is presented here in six easy-to-follow modules: 1) Multimodal data generation and collection, 2) extraction of mechanistic features, 3) knowledge-driven dimension reduction, 4) reduced order surrogate models, 5) deep learning for regression and classification, and 6) system and design. These data science and mechanistic analysis steps are presented in an intuitive manner that emphasizes practical concepts for solving engineering problems as well as real-life problems. This book is written in a spectral style and is ideal as an entry level textbook for engineering and data science undergraduate and graduate students, practicing scientists and engineers, as well as STEM (Science, Technology, Engineering, Mathematics) high school students and teachers.

Author Biography

Dr. Wing Kam Liu is Walter P. Murphy Professor of Mechanical Engineering & Civil and Environmental Engineering and (by courtesy) Materials Science and Engineering, and Director of Global Center on Advanced Material Systems and Simulation (CAMSIM) at Northwestern University in Evanston, Illinois; Dr. Zhengtao Gan is Research Assistant Professor in the Department of Mechanical Engineering at Northwestern University in Evanston, Illinois; and Dr. Mark Fleming, is the Chief Technical Officer of Fusion Engineering, and an Adjunct Professor in the Department of Mechanical Engineering at Northwestern University in Evanston, Illinois.

Number of Pages: 276
Dimensions: 0.62 x 9.21 x 6.14 IN
Illustrated: Yes
Publication Date: December 23, 2022